Superintegrability of matrix models and BPS algebras
Victor Mishnyakov (Nordita)
Abstract: The prominent role of matrix models in physics and mathematics is well known. It is especially interesting that some of those models are exactly solvable, meaning the one can find explicit formulas for correlation functions. This phenomenon has also been called superintegrability of matrix models. I will present some recent attempt to study it systematically and search for its algebraic origins. It leads to an interesting connection with the rapidly developing field of BPS algebras and their representations.
mathematical physicsdynamical systemsquantum algebrarepresentation theorysymplectic geometry
Audience: general audience
BIMSA Integrable Systems Seminar
Series comments: The aim is to bring together experts in integrable systems and related areas of theoretical and mathematical physics and mathematics. There will be research presentations and overview talks.
Audience: Graduate students and researchers interested in integrable systems and related mathematical structures, such as symplectic and Poisson geometry and representation theory.
The zoom link will be distributed by mail, so please join the mailing list if you are interested in attending the seminar.
| Organizers: | NiŃolai Reshetikhin, Andrii Liashyk, Ivan Sechin, Andrey Tsiganov* |
| *contact for this listing |
